Single gallium nitride nanowire lasers.
نویسندگان
چکیده
There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.
منابع مشابه
Cleaved-coupled nanowire lasers.
The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints an...
متن کاملWidely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides.
Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface ...
متن کاملOptimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature
Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emi...
متن کاملControlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method
Chemical vapor deposition (CVD) using gold nanoparticles as the catalyst to grow high-quality single-crystal gallium nitride nanowires was developed. This method enables control over several important aspects of the growth, including control of the nanowire diameter by using monodispersed gold clusters, control of the nanowire location via e-beam patterning of the catalyst sites, and control of...
متن کاملPolarized Raman confocal microscopy of single gallium nitride nanowires.
Polarized Raman spectra and corresponding Raman scattering intensity images of an isolated gallium nitride nanowire with a diameter of 170 nm are presented. The sensitivity of the confocal microscope combined with a high-resolution piezoelectric stage enables analysis of the crystalline phase and crystallographic orientation of an individual nanowire with an excellent spatial and spectral resol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2002